Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202012.0097.v1

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached a global epidemic across the world after first reported in Wuhan, China’s Hubei province in December 2019. The pandemic is also associated with acute respiratory distress syndrome (ARDS) characterized by excess inflammation, progressive arterial hypoxemia and dyspnea. Mesenchymal stem/ stromal cells (MSCs) have been investigated as treatment for ARDS due to immunomodulatory property. Exosomes derived from MSCs play an important role in paracrine signaling of MSCs, thereby contributed to immunomodulation of the immune microenvironment. Exosomes are emerged as potential alternative to MSC cell therapy with superiority of safety. In this review, we will introduce MSC-derived exosomes and briefly discuss current progress on MSCs and exosomes in ARDS, which may have clinical implications in pathogenesis and treatment of COVID-19.


Subject(s)
Coronavirus Infections , Respiratory Distress Syndrome , Dyspnea , Hypoxia , COVID-19 , Inflammation
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.339473

ABSTRACT

We thank Alquicira-Hernandez et al. for their reanalysis of our single-cell transcriptomic dataset profiling peripheral immune responses to severe COVID-19. We agree that careful analysis of single-cell sequencing data is important for generating cogent hypotheses but find several aspects of their criticism of our analysis to be problematic. Here we respond briefly to misunderstandings and inaccuracies in their commentary that may have led to misinformed interpretation of our results.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.341479

ABSTRACT

SARS-CoV-2 is a deadly virus that is causing the global pandemic coronavirus disease 2019 (COVID-19). Our immune system plays a critical role in preventing, clearing, and treating the virus, but aberrant immune responses can contribute to deleterious symptoms and mortality. Many aspects of immune responses to SARS-CoV-2 are being investigated, but little is known about immune responses to carbohydrates. Since the surface of the virus is heavily glycosylated, pre-existing antibodies to glycans could potentially recognize the virus and influence disease progression. Furthermore, antibody responses to carbohydrates could be induced, affecting disease severity and clinical outcome. In this study, we used a carbohydrate antigen microarray with over 800 individual components to profile serum anti-glycan antibodies in COVID-19 patients and healthy control subjects. In COVID-19 patients, we observed abnormally high IgG and IgM antibodies to numerous self-glycans, including gangliosides, N-linked glycans, LacNAc-containing glycans, blood group H, and sialyl Lewis X. Some of these anti-glycan antibodies are known to play roles in autoimmune diseases and neurological disorders, which may help explain some of the unusual and prolonged symptoms observed in COVID-19 patients. The detection of antibodies to self-glycans has important implications for using convalescent serum to treat patients, developing safe and effective SARS-CoV-2 vaccines, and understanding the risks of infection. In addition, this study provides new insight into the immune responses to SARS-CoV-2 and illustrates the importance of including host and viral carbohydrate antigens when studying immune responses to viruses.


Subject(s)
Coronavirus Infections , Autoimmune Diseases , Lewy Body Disease , Nervous System Diseases , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.341743

ABSTRACT

Characterization of antibody response to SARS-CoV-2 is urgently needed to predict COVID-19 disease trajectories. Ineffective antibodies or antibody-dependent enhancement (ADE) could derail patient immune responses, for example. ELISA and coronavirus antigen microarray (COVAM) analysis epitope-mapped plasma from 86 COVID-19 patients. The experiments identified antibodies to a 21-residue epitope from nucleocapsid (termed Ep9) associated with severe disease, including ICU stay, requirement for ventilators, and death. Furthermore, anti-Ep9 antibodies correlate both with various comorbidities and ADE hallmarks, including increased IL-6 levels and early IgG response. Importantly, anti-Ep9 antibodies can be detected within five days post-symptom onset and sometimes within one day. The results lay the groundwork for a new type of COVID-19 diagnostic for the early prediction of disease severity to guide more effective therapeutic interventions.


Subject(s)
COVID-19 , Death
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.14.20212340

ABSTRACT

The clinical manifestations of COVID-19 vary broadly, ranging from asymptomatic infection to acute respiratory failure and death. But the predictive biomarkers for characterizing the variability are still lacking. Since emerging evidence indicates that extracellular vesicles (EVs) and extracellular RNAs (exRNAs) are functionally involved in a number of pathological processes, we hypothesize that these extracellular components may be key determinants and/or predictors of COVID-19 severity. To test our hypothesis, we collected serum samples from 31 patients with mild COVID-19 symptoms at the time of their admission. After standard therapy without corticosteroids, 9 of the 31 patients developed severe COVID-19 symptoms. We analyzed EV protein and exRNA profiles to look for correlations between these profiles and COVID-19 severity. Strikingly, we identified three distinct groups of markers (antiviral response-related EV proteins, coagulation-related markers, and liver damage-related exRNAs) with the potential to serve as early predictive biomarkers for COVID-19 severity. Among these markers, EV COPB2 has the best predictive value for severe deterioration of COVID-19 patients in this cohort. This type of information concerning functional extracellular component profiles could have great value for patient stratification and for making early clinical decisions about strategies for COVID-19 therapy.


Subject(s)
COVID-19 , Respiratory Insufficiency , Death
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.341958

ABSTRACT

Virus-specific humoral and cellular immunity act synergistically to protect the host from viral infection. We interrogated the dynamic changes of virological and immunological parameters in 12 patients with symptomatic acute SARS-CoV-2 infection from disease onset to convalescence or death. We quantified SARS-CoV-2 viral RNA in the respiratory tract in parallel with antibodies and circulating T cells specific for various structural (NP, M, ORF3a and spike) and non-structural proteins (ORF7/8, NSP7 and NSP13). We observed that while rapid induction and quantity of humoral responses were associated with increased disease severity, an early induction of SARS-CoV-2 specific T cells was present in patients with mild disease and accelerated viral clearance. These findings provide further support for a protective role of SARS-CoV-2 specific T cells over antibodies during SARS-CoV-2 infection with important implications in vaccine design and immune-monitoring.


Subject(s)
Brain Concussion , Virus Diseases , Death , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL